
XPRZModem

XPRZModem ii

COLLABORATORS

TITLE :

XPRZModem

ACTION NAME DATE SIGNATURE

WRITTEN BY October 17, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

XPRZModem iii

Contents

1 XPRZModem 1

1.1 XPRZModem.guide . 1

1.2 introduction . 1

1.3 installation . 2

1.4 interface . 3

1.5 options . 3

1.6 Text Translation Mode . 5

1.7 Overwrite Mode . 5

1.8 Buffer Size . 6

1.9 Frame Size . 6

1.10 Error Count . 7

1.11 Block Size . 7

1.12 Auto Activate . 8

1.13 Delete After Sending . 8

1.14 Keep Partial Files . 8

1.15 Send Full Directory Path . 8

1.16 Receive Full Directory Path . 8

1.17 Default Path . 9

1.18 Maximun Block size for file transfer . 9

1.19 Set Link rate . 10

1.20 No files mode . 10

1.21 DirectZap mode . 10

1.22 FTN mode . 10

1.23 XPR2001 Mode . 11

1.24 XPRzedzap Defaults . 11

1.25 XPRzmodem Defaults . 11

1.26 Serial Port Settings . 12

1.27 Receiving Files . 12

1.28 sending . 13

1.29 technical . 13

XPRZModem iv

1.30 future . 16

1.31 history . 16

1.32 todo . 20

1.33 credits . 20

1.34 Olaf ’Olsen’ Barthel . 21

1.35 Jim Cooper . 21

1.36 Geoffrey Faivre-Malloy . 21

1.37 Rainer Hess . 21

1.38 Rick A. Huebner . 21

1.39 Yves Konigshofer . 21

1.40 Willy Langeveld . 22

1.41 Russell McOrmond . 22

1.42 Marco Papa . 22

1.43 William M. Perkins . 22

1.44 John Tillema . 22

1.45 Robert Williamson . 22

XPRZModem 1 / 22

Chapter 1

XPRZModem

1.1 XPRZModem.guide

XPRZModem.library & XPRzedzap.library
Version 3.4
Nov 26 1994

Contents:

Introduction

Installation

Interface

Options

Serial Port Settings

Receiving Files

Sending Files

Technical Information

Future

Revision History

To do

Credits

1.2 introduction

Introduction

XPRzModem.library and XPRzedzap.library are Amiga shared libraries (with

XPRZModem 2 / 22

full source code) which provide ZModem file transfer capabilities to any
XPR-compatible communications program. The XPR (eXternal PRotocol) standard
describes an interface method which allows various file transfer protocols to
be implemented as Amiga shared libraries. These libraries may then be used
interchangeably in any compatible communications program. This takes a heavy
load off of the comm program author, who no longer has to support dozens of
different file transfer protocols in their program in order to make it widely
useful and popular. The comm program is also smaller and more efficient as a
result, since all those obscure protocols (you know, the ones *you* don’t
need) are no longer taking up space.

The XPR standard also helps users, who can mix and match their favorite
file transfer protocols with their favorite comm programs. And when new
protocols are invented, the user simply plugs in a new library, and voila!,
it’s ready to use. Hopefully, making protocols easy to support will allow
more and better comm programs to be written, as authors can concentrate on
their programs instead of constantly re-inventing the wheel.

Of course, for all of this wonderful stuff to happen, there needs to be
a good selection of these XPR libraries available to the public. It’s the
classic chicken-and-egg problem; comm program authors won’t be motivated to
support the XPR standard unless there are a sizable number of protocols
available for it. And other programmers won’t be motivated to write XPR
libraries until there are a sizable number of comm programs which can use
them. In an effort to do my bit [B^)] for the Amiga community, which has
given me so many neat toys to play with over the past few years, I decided to
try and help get the ball rolling.

Hopefully, the early availability of a ZModem library will help
stimulate interest in the XPR standard, resulting in better Amiga telecomms
for all of us. And by making my source code PD, I hope to help others
interested in writing XPR libraries by giving them some serious example code.
Also, having ZModem library code readily available to John Q. Hacker should
help ensure a steady stream of enhanced ZModem libraries (with enzymes) for
all of us to use in the future.

Of course, no discussion of the XPR standard would be complete without
giving proper credit to the author,

Willy Langeveld
of the Stanford Linear Accelerator Center. Many thanks are due ←↩

him for this
effort. If you have any further questions about the XPR standard, be sure
and download the spec; it should be available on BIX (since he’s a sysop
there), or on most other major systems.

All files in this archive which are not copyrighted are hereby released
to the public domain (which they were anyway, by way of not being
copyrighted, but I want to make sure YOU realize that). Do as you like with
them. Please make lots of copies and distribute them all over the place, and
make lots of derivative works, and everything! Heck, you can even publicly
perform and/or display this code if you can figure out how...

1.3 installation

XPRZModem 3 / 22

Just copy the xprzmodem.library file into your LIBS: directory. All
XPR-compatible comm programs should provide a way for you to select which XPR
protocol you wish to use, either by giving you a file requester showing
LIBS:xpr*.library, or by automatically detecting these libraries and adding
them into their menus.

If your intended use is with a Mailer, use xprzedzap.library, selecting
appropriate CPU version for your system. You may also use xprzedzap.library
in the place of xprzmodem.library in both BBS’s and terminal programs.

680x0: For Kickstart 2.x (37.175) or higher, all Processors.
68030: For Kickstart 2.x (37.175) or higher, optimized code for

CPU-Type 68030.
68040: For Kickstart 2.x (37.175) or higher, optimized code for

CPU-Type 68040.

With this version the Protocol name sent to the Status Display will
be one of:

Zmodem 1K blocks standard, non-ftn mode
ZedZap up to 8K Blocks based upon bps rate, ftn mode
ZedZip 1k blocks , ftn mode
DirectZap up to 8k blocks, minimum escaping, ftn mode

Also note that During batch transfers, the Last Error message field
is set to "None" when starting to send or receive next file. This is to
avoid the confusion caused by an error message from a previous file not being
cleared.

1.4 interface

The XPR standard lays out two ways for the comm program user to specify
options for the XPR. The more primitive option is for the comm program to
provide a method of passing an option string to the XPR library before
transferring files. The precise format and usage of this option string is
left up to the XPR author; the comm program just sends it verbatim. If an
environment variable is found with the same name as the XPR (i.e. there’s a
file in the ENV: directory called "xprzmodem"), the comm program is supposed
to use this string (contents of file) to initialize the protocol options.
Also, a menu option or some such should normally be provided which will allow
the user to be prompted for the option string interactively.

Version 2.0 of the XPR standard created a new, more sophisticated way
for the comm program user to specify XPR options. If the comm program
supports it, the XPR library can give the comm program a list of option
prompts, and the comm program can then let the user interactively set the
various options individually, possibly even using nice gadgets and stuff.

1.5 options

T
Text Translation Mode

XPRZModem 4 / 22

- Controls whether or not CR/LF pairs are translated.

O
Overwrite Mode
- Controls what happens when a duplicate filename is

found.

B
Buffer Size
- Controls the size of the file I/O buffer.

F
Frame Size
- Sends an ACK after X-many bytes.

E
Error Count
- Determines the number of sequential errors before

ZModem will abort the transfer.

M
Block Size
- Determines the maximum block size.

A
Auto-Activate
- Controls whether or not ZModem will automatically

activate a receive.

D
Delete After Sending
- Controls whether or not the file is deleted after

it has been sent.

K
Keep Partial Files
- Controls whether or not partially received files

are kept.

R
Receive Full Dir Path
- Controls whether or not ZModem will use the full

directory path sent.

S
Send Full Dir Path
- Controls whether or not ZModem will send the full

directory path.

P
Default Receive Path
- Gives the default path for downloads to be.

N
No Files Mode
- Allows session without sending files.

XPRZModem 5 / 22

Q
DirectZap
- DirectZap protocol escapes fewer characters.

Z
FTN mode
- Enables special features for Mailer operation.

Y
XPR2001 mode
- Enables XPR 2.001 extensions

XPRzedzap Defaults
- Defaults for xprzedzap.library.

XPRzmodem Defaults
- Defaults for xprzmodem.library.

1.6 Text Translation Mode

Text Translation Mode

Text Yes (TY) - If receiving, translate CR/LF pairs or solo CR chars to
normal Amiga LF chars. Ignore data past ^Z. If sending,
suggests to receiver that they should receive this file in
text mode.

Text No (TN) - Receive file verbatim, without changes. If sending, suggest
to receiver that they receive this file verbatim, without
translations.

Text (T?) - If receiving, use sender’s suggestion as to whether to do
Status EOL translations or not. If sending, tell receiver to use
Unknown default mode, because we don’t know either.

Text Comm (TC) - The library asks the comm program whether or not to use
Text mode for each file. If the comm program doesn’t
support the necessary xpr_finfo() call,
or if the call fails, this option acts like T?. From the
user’s point of view, what this option normally does is set
the Text mode to match the comm program’s built-in
text/binary/end-of-line/translation mode, if any.

NOTE: The T option serves only as a suggestion to the receiving system when
sending files; the receiver makes the final decision as to whether to take your
advice or to force the files to be received in text or binary mode.

1.7 Overwrite Mode

XPRZModem 6 / 22

Overwrite Mode

Overwrite Yes (OY) - If about to receive file with same name as one which
already exists, delete the old file and receive the
new file in its place.

Overwrite No (ON) - If about to receive file with same name as one which
already exists, append ".dup" onto the name of the new
file to keep them separate.

Overwrite (OR) - If about to receive file with same name as one which
Resume already exists, resume receiving file data from the

current end of the existing file.

Overwrite Skip (OS) - If about to receive file with same name as one which
already exists, tell sender never mind, skip this
file, we don’t want it. Batch transfers will move
on to the next file in the set, if any.

1.8 Buffer Size

Buffer Size

Buffer Size (Bnnn) - XPRZModem.library adds a layer of file I/O buffering in
addition to whatever the comm program may or may not
provide. This option sets the size of XPRZModem’s file
I/O buffer in kilobytes. The minimum value is 1 KB, for
those using RAM drives or fast hard drives, or those whose
comm programs already provide sufficient buffering. The
maximum value is as much contiguous RAM as you have
available in your Amiga.

Must be at least twice the size of M option.

If you specify more than is actually available, XPRZModem
will keep decrementing the buffer size requested by 1 KB
until the memory allocation works. That way, if your RAM
is too fragmented to use the amount you request, XPRZModem
simply uses the largest block available. Buffering is
especially helpful for floppy drive users; it keeps your
drive from continuously gronking and slowing things down
all through the transfer. If you are a floppy drive user,
you might need to set the

Frame Size
.

NOTE: Versions of VLT prior to 5.034 couldn’t handle buffer sizes >= 32 KB.
If you wanted to use larger buffers before and couldn’t, try again now.

1.9 Frame Size

XPRZModem 7 / 22

Frame Size

Frame Size (Fnnn) - Although normally avoided, ZModem has the ability to
require an ACK to be sent from the receiver to the sender
every X-many data bytes. Normally you don’t want to use
this feature, because not waiting for ACKs is part of how
ZModem works so fast. However, this feature can be very
useful in conjunction with file I/O buffering on slow
devices namely those floppy drives). If you set up a
large I/O buffer to avoid gronking your floppy so often,
you’ll find that when the buffer finally *does* get around
to being flushed that it can take a very long time; so long,
in fact, that the delay can cause timeouts and errors. But
if you set your ZModem to require the sender to wait for an
ACK every buffer’s-worth of data, the sender will politely
wait for you to flush your buffer to the slow floppy and
send it an ACK saying it’s OK to continue now. This value
should be set to 0 to disable ACKs (normal mode), or set it
to the actual number of data bytes allowed between ACKs.
For example, if you set B64 because of your floppy, you
should also set F65536.

1.10 Error Count

Error Count

Error Count (Ennn) - This allows you to set the number of sequential errors
which will be required to convince ZModem to abort the
transfer. The normal value is 10, meaning that 10 errors
must happen in a row with no valid data being transferred
in order to cause an abort. This setting is provided for
those using XPRZModem with a BBS, who may wish to use a
relaxed setting, or those with really lousy phone lines
who are desparate and patient enough to want the transfer
to continue in spite of horrible performance.

1.11 Block Size

Block Size

Block Size (Mnnn) - Size of Block to transfer. Default of ZModem is 1024,
minimum is 64 Bytes and the Maximum is 8192 Bytes (8K).
Be careful with this option! If the uploaders blocks are
bigger than the receiver because there is a older zmodem
you will get errors and your cps-rate will slow down.
Large blocks are useful if you have a good phoneline and
a fast modem eg. 9600/14400 and higher. If you use larger
blocks you will save a little bit transfer overhead and
the cps-rate will get a little better. Remember, the
bps-rate controls the Blocksize, this option only sets
the maximum.

XPRZModem 8 / 22

1.12 Auto Activate

Auto Activate

Auto-Activate Yes (AY) - If the comm program supports the ability, the library
will automatically go into receive mode when the start
of a ZModem download is detected.

Auto-Activate No (AN) - Don’t try to automatically start downloading, make the
user activate it.

1.13 Delete After Sending

Delete After Sending

Delete After Sending Yes (DY) - Delete each file after it has been sucessfully
sent.

Delete After Sending No (DN) - Don’t delete files after sending them.

1.14 Keep Partial Files

Keep Partial Files

Keep Partial Files Yes (KY) - Keep the fragment of a file received so far if
file reception is aborted. This allows you to
use the

Overwrite Resume
option above to pick up

where you left off on your next attempt.

Keep Partial Files No (KN) - Delete any partially-received file after an
aborted transfer.

1.15 Send Full Directory Path

Send Full Directory Path

Send Full Directory Path Yes (SY) - Send full filenames including directory
path to receiver.

Send Full Directory Path No (SN) - Send only simple filenames, not including
directory path.

1.16 Receive Full Directory Path

XPRZModem 9 / 22

Receive Full Directory Path

Receive Full Directory Path Yes (RY) - Use full filename exactly as received,
instead of using the P option directory
path.

Receive Full Directory Path No (RN) - Ignore received directory path (if any),
use

P
option directory path instead.

1.17 Default Path

Default Path

Default Path for (Pxxx) - Store all received files in directory "xxx" if option
Received Files

RN
set. Ignored if option

RY
set. "xxx" can be any

valid existing directory, with or without trailing
"/" (e.g. "Pdf0:", "PComm:hold", etc.).

1.18 Maximun Block size for file transfer

Maximun Block size for file transfer

M{size} Maximun Block size for file transfer:
Mx = Size of Block to transfer. Default of ZModem is 1024,

Minimum is 64 Bytes, Maximum is 8192 Bytes (8K).
Be carefull with this option. If the uploaders blocks are
bigger than the receiver you will get errors and very
poor cps rates.
This option is normally used only in FTN mode, but may
be used in terminal abd BBS modem to replace the
XPRSZmodem.library.
The block size will vary when sending and will be static
when receiving.
When sending the maximum packet size will be baud rate
dependant, and the size is calculated with the formula

MAX_PACKET = (BPS_RATE * 8192 / 9600).
You can specify a limit for the maximum packet size with
the M option, but it only influences the packet size if
it is smaller than 8192 or if one is receiving a file

(NOTE: It should always be set to 8192 if one is receiving a file.
But the option in there to limit it to less).
The IO Buffer for reading/writing to/from the disk must be equal
to twice the maximum packet size or the maximum packet size will
be automatically decreased.

XPRZModem 10 / 22

1.19 Set Link rate

Set Link rate

C{link bps} Set bps rate of link
C0 Buffer allocations and calculations of CPS will be based

upon locked rate passed by the comm program.
Cx Buffer allocations and calculations of CPS will be based

upon link rate.

1.20 No files mode

No files mode

N{Y|N} Start transfer even if no files to send:
NY send no files mode (DirectZap, ZedZip and ZedZap protocols)

It is permitted to have a session without sending or
receiving files. This is required with some protocols in
FTN mode so as not to generate a spurious failure after a
mailer session. This also changes EOF actions from sending
CAN’s to just sending ZFIN.

NN transfer will not take place if not files to send.

1.21 DirectZap mode

DirectZap mode
"

Q{Y|N} DirectZap protocol mode:
QY Only ZDLE and ZDLEE are escaped.
QN Normal escapeing is done.

1.22 FTN mode

FTN Mode

Z{Y|N} FTN mode
ZY
- RxTimeOut is restored to 600ms
- transfers start with blocksize specified in M option.
- serialbuffer is cleared before sending/recving. In FTN

mode the turnaround from sending to receiving (and vis-versa)
is quite fast, clearing the buffer avoids reading echos of our
own characters or leftovers from the previous transfer.

ZN none of the above take place

XPRZModem 11 / 22

1.23 XPR2001 Mode

XPR 2.001 Mode

Y{Y|N} XPR2001 mode
Y - When enabled, calls to XprSetup() will return a mask with

the additional bits defined in the XPR 2.001 spec related
to double-buffering, etc. xpr_update() calls will be
masked with a bit indicating directionof transfer to
support host program rthat use dual-staus windows.

N - XPR2001 support diabled, required for Ncomm, Excelsior
BBS and other hosts which do not properly handle xpr
function and callbacks return codes.

1.24 XPRzedzap Defaults

Default Options: xprzedzap.library

TN No Text translation
OR Overwrite Resume
B16 Buffer size 16KB
F0 Frame size = filelength
E30 Error count 30
SN Do not send full directory path
RN Do not use received full directory path
AN Disable Auto-activate mode
DN Do not Delete after sending
KY Keep partial files
P"" Comm progrmas provides Path to use for received files
M8192 Maximum packet size 8K
C0 Set Link BPS Rate
NY Alow Send if there are no files
QN Disable DirectZap escape only CAN
ZY Enable FTN mode
YY Enable XPR2001 extensions

1.25 XPRzmodem Defaults

Default options: xprzmodem.library

TC Comm Program Sets Text translation mode
ON Overwrite No
B16 Buffer size 16 KB
F0 Frame size = filesize
E10 Error count 10
SN Do not Send full directory path
RN Do not use Received full directory path
AY Enable Auto-activate mode
DN Do not Delete after sending
KY Keep partial files
P"" Comm program sets Path to use for received files

XPRZModem 12 / 22

M1024 Set maximum packet size 1K
C0 Set Link BPS Rate
NN Do not Send if there are no files
QN Disble DirectZap escape only CAN
ZN Disable FTN mode
YY Disable XPR2001 extensions

1.26 Serial Port Settings

This implementation of ZModem requires that your serial port be set to 8
data bits, no parity, 1 stop bit. This allows ZModem to send full 8-bit
binary data bytes without having them munged on the way through the modem.
If your comm program supports the xpr_setserial() function, XPRZModem will
use it to set your serial port to 8N1 before doing a transfer, and will set
your port back the way it was again after it’s done. If your comm program
doesn’t support xpr_setserial(), you’ll need to make sure it’s in 8N1 mode
yourself.

ZModem works well in all serial port handshaking modes; none, XON/XOFF,
or 7-wire/RTS/CTS. Since any or all of those handshaking modes may be
appropriate at different times, with different modems or remote systems,
XPRZModem lets you set the handshaking mode and doesn’t mess with it.

XON/XFF MUST be disabled when using DirectZap (option QY)

1.27 Receiving Files

Once you get the
ZModem options
and your

serial port configuration
set

up properly, you’re ready to actually use this thing (gasp!). Receiving
files via ZModem is quite simple. First, get the file sender going by using
whatever command it wants. ZModem is a batch file transfer protocol, meaning
that it’s capable of transferring several files in a single exchange, so the
remote system may allow you to specify multiple files to be sent to you at
one time. It may also allow you to use wildcard characters in the
filename(s); this is all system dependant.

This may be all you have to do. If you specified option {"AY" link A}
("auto-activate" on), and your comm program supports it, XPRZModem should
automatically activate at this point and start receiving your files. If you
specified

AN
, or your comm program doesn’t support

auto-activation, you should now use whatever option your comm program
provides to activate file reception. This will usually be a menu option or
button gadget. Either way, once XPRZModem starts receiving files, it should
automatically receive all of the files you specified into the proper
directory as indicated by the

R

XPRZModem 13 / 22

and
P
options.

Make sure that you have set the ZModem options properly before
starting the transfer; especially, make sure you only use

TY
if you know

that all of the files being transferred in this batch are printable ASCII
text files. If you use

TY
on normal binary files like .ARCs or .ZOOs,

they’ll be mangled beyond use.

1.28 sending

Sending files using ZModem is fairly straightforward. First, activate
the file receiver with whatever command the remote system requires. You may
or may not need to specify a filename or directory to the remote system; this
depends on their implementation of ZModem. Once the remote system is ready
to receive files, activate your comm program’s ZModem send function. Your
comm program will prompt you for which file(s) to send. Although ZModem is a
batch protocol, your comm program may or may not allow you to specify
multiple file names to be sent; also, wildcards may or may not be supported.
These decisions are up to the comm program author; ZModem will handle
multiple files and wildcards if the comm program allows them. Once you’ve
specified the file name(s), the file(s) will be sent to the remote system.

If errors occur while sending the file(s), you’ll probably notice a
small enhancement I made to the normal ZModem error recovery procedures.
Normally, file transfer protocols have to compromise between efficient data
transmission on good, clean phone lines and quick error recovery on bad,
noisy phone lines. If you pick a large packet size, you get high throughput
on clean lines due to low packet overhead, but you have slow recovery times
and large amounts of retransmitted data on noisy lines. If you’ve used
YModem on noisy lines you’ve seen this problem. But, if you use small
packets to reduce retransmitted data on noisy lines, you increase the amount
of time the protocol spends sending packet overhead, and your throughput
suffers. The solution is to vary the block size according to the experienced
error rate during the transfer. That way you aren’t stuck with a rigid
packet length which will sometimes be the wrong size no matter what. I came
up with this idea back when I first wrote the ZModem code for Opus, and
cleared it for future compatibility with ZModem’s designer, Chuck Forsberg,
back then. Since then the basic concept has been extensively tested in the
Opus BBS system, and has proven quite effective; it has also been
incorporated into various other ZModem implementations over time. The actual
algorithm for deciding what size packets to use when is pretty much up to the
protocol author. XPRZModem uses a modified version of the Opus algorithm
which prevents locking the packet size at a small value when a large one-time
burst of errors occurs.

1.29 technical

XPRZModem 14 / 22

Here are some notes for the "other" XPR standard users, ←↩
namely the comm

program authors:

Certain XPR callback functions *must* be implemented by the comm program
author in order for XPRZModem to be used. If any of these functions are not
supported by your comm program, XPRZModem will display an error message and
abort when invoked. These required functions are:

xpr_fopen(), xpr_fclose(), xpr_fread(), xpr_fwrite(),
xpr_fseek(), xpr_sread(), xpr_swrite(), and xpr_update()

In addition, for FTN operation , the XPR v3 xpr_updstatus function is
required. The library will NOT abort if your program does not have it. This
function provides transfer status to the host program for EACH file sent and
received.

The xpr_update() function provides many data fields for your comm
program to potentially display to the user. These are the XPR_UPDATE struct
elements which XPRZModem will keep updated during transfers:

xpru_protocol, xpru_filename, xpru_filesize, xpru_msg,
xpru_errormsg, xpru_blocks, xpru_blocksize, xpru_bytes,
xpru_errors, xpru_timeouts, xpru_blockcheck, xpru_expecttime,
xpru_elapsedtime, and xpru_datarate

As you can see, XPRZModem tries to provide as many status fields as
possible. Although all of them are useful, the ones which are most important
to ZModem users are filename, filesize, msg and/or errormsg, and bytes.
Please try to provide at least these fields in your status display, plus as
many of the rest as you can manage.

All callbacks are protected so we are able to call XPR callback
functions in the comm program from inside the XPR library. This protects our
registers from potential bugs in the comm program which might change them in
unexpected ways. The prototypes in xprzmodem.h put all arguments into the
registers required by the XPR spec.

Although only the XPR callback functions listed above are crucial for
XPRZModem, almost all of them are used if they are provided. Although
XPRZModem will function without any of the other routines, its performance or
capabilities may be degraded somewhat. Specifically, this is what you give
up if you choose not to supply any of these other XPR callback functions:

xpr_sflush(): Used when performing error recovery and resync
when sending files. If not provided, extra timeout errors
and delayed error recovery will be likely. The files will
still be transferred properly, but errors will degrade
overall throughput more than usual.

xpr_chkabort(): Called between sending or receiving packets.
If not provided, there’s no way for your comm program user
to abort a transfer in progress except by trying to somehow
force it to decide to give up and abort on its own, such as
by turning off the modem and hoping the protocol will abort
after enough timeouts (it will, eventually...).

XPRZModem 15 / 22

xpr_gets(): Called to prompt the user interactively for
options

when your comm program invokes XProtocolSetup() ←↩
with a null

xpr_filename field (if xpr_options() isn’t available
instead). If not provided, you’ll have to prompt
the user for the options string yourself, and pass this
string in xpr_filename when invoking XProtocolSetup().

xpr_setserial(): Called to obtain the current serial port
settings, and to change the
serial port
to 8N1 if it’s not

already set that way. If not provided, XPRZModem will
assume all transfers are being done at 2400 bps, which
won’t hurt anything, and your users will have to make sure
that the serial port is set to 8N1 themselves.

xpr_ffirst() and xpr_fnext(): If either of these routines are
missing, XPRZModem will lose the ability to send multiple
files in a batch. The xpr_filename pointer passed to
XProtocolSend() will be assumed to point to the actual full
filename of the single file to be sent in this batch. If
both of these routines are provided, XPRZModem will rely
upon them completely to obtain the names of the files to
send, and the xpr_filename pointer will not be used for any
purpose by XPRZModem except to be passed to ffirst/fnext.
This gives your comm program a way to send not just a single
filename template’s worth of files in a batch, but a list of
different filenames. If, for example, you set xpr_filename
to point to the first node of a linked list of filenames
and/or templates to be sent, rather than just having it
point to a string, you can have your ffirst and fnext
routines traverse this linked list in order to determine the
next file to be sent. Or you could have xpr_filename point
to a buffer containing a list of filenames separated by
commas, and your ffirst/fnext routines could return each
filename in this list in turn. The key here is that if you
provide these two routines, you’re in complete control over
the series of names fed to XProtocolSend. If you omit these
routines, XPRZModem is stuck with single-file mode. Once
again, if these two routines are provided, XPRZModem will

always call them; it makes no attempt to use the
xpr_filename pointer for anything itself. This is not
explicitly spelled out in the XPR standard, but it seems the
only reasonable way to handle batch protocols to me.
Hopefully other XPR library authors will follow this
precedent as well, so that comm program authors will be able
to count on multiple-filename batch sessions being handled
properly.

xpr_finfo(): Used to determine the filesize of files being sent,
in order to tell the receiving system how big they are.
Also used to determine the size of a file which already
exists when in
Overwrite Resume

XPRZModem 16 / 22

mode; XPRZModem must be able
to get the size of the current portion of the file in order
to be able to tell the sender where to resume sending from.
If this routine isn’t provided,
Overwrite Resume
mode is

not allowed. This routine is also used to check if
Text mode

should be set to Y or N for each file when option
TC
is set.

xpr_options(): If you don’t supply this, users will be stuck
with setting the library
options
via the semi-cryptic text

string method (ENV: and/or xpr_gets()). This routine and
xpr_update() have a lot to do with the look and feel of your
program when using XPR libraries; any skimping on these two
routines will be painfully obvious to the user. Conversely,
doing a nice job on these two routines will really make your
program shine.

xpr_unlink(): Required by the
DY
and

KN
options, so if you don’t

supply it, those options are not allowed.

1.30 future

I don’t want or expect this to be the last or only XPR ZModem library
available. There are a lot of less-commonly-used ZModem features which have
popped up over the past few years, and many people might like to see some of
them made available. Although DirectZap style escaping is enabled with the
QY option (everything except ZDLE and ZDLEE), 8th bit escaping to allow use
of 7-bit serial channels is not on the todo list as yet.. I didn’t want to
add a bunch of rarely-used bells and whistles to this version of the library,
because I want it to be able to serve as comprehensible example code. I just
want to provide a good solid ZModem which reliably handles the majority of
people’s needs. Hopefully, this will serve as a foundation for future
enhanced versions, while providing a safe fallback for people to come back to
if that fancy new enhanced version (with neo-maxi zoomed weebies) turns out
to need some more debugging.

1.31 history

1.0, 29 Jul 89 - Original release.

1.1, 03 Aug 89 - Fixed zsdata() to send file data packet in one swrite()

XPRZModem 17 / 22

call instead of calling zsendline for every byte, to prevent
hammering the serial.device with single-byte write requests
during uploads, and to speed up effective data transmission
rates.

2.0, 28 Oct 89 - Converted from Manx to Lattice C 5.04. Created prototypes and
made other tweaks as required. Designed new library skeleton
for Lattice code, replacing the old Manx library skeleton.
Added new options TC, A, D, K, S, R, and P. Added support for
xpr_options() callback routine, and generally brought things
up to par with XPR Spec 2.0.

2.10, 12 Feb 91 - Fixed the following generally minor problems:

o No longer munges A6 register (this was potentially serious), and added
callback glue to ensure comm program can’t munge OUR registers either.
Decided that the protective glue was much safer than the more elegant
direct invocation used in version 2.0.

o Slightly less transmission overhead (concatenates all output into single
swrites, builds output packets a bit faster).

o Considerably less receive overhead; does a lot more waiting and a lot
fewer sreads, especially at high speed. WARNING: this change doesn’t
work with VLT version 4.846 or earlier (yes, Willy; it really was
broken B-)). This change may or may not actually do you any good,
depending upon how your comm program implements the xpr_sread() function.

o Fixed problems getting synchronized with some systems on uploads.

o No longer closes files twice.

o Now uses fully-reentrant sprintf() from amiga.lib; no more nasty BSS.

o A couple of obscure error messages were > 50 bytes long, causing problems
with some comm program’s transfer status windows, e.g. the infamouse VLT
"Incredible Shrinking Status Window."

o Stabilized spastic data rate by computing elapsed time more accurately.

o Fixed sprintf() error which caused invalid filelength to be sent on
uploads.

o Aligned all data for optimal performance on 68030++ CPUs (now that I have
my A3000... B-)). Doesn’t really make any noticeable difference, but it
makes us 68030 owners feel better anyway. I’m also including a version of
the library compiled for the 68020+ CPU, on the same principle.

o Now uses .DUP2 instead of .DUP.DUP, etc.

o Added config option E for number of errors which cause an abort.

o Fixed bogus IO_Torture false alarm concerning timer.device.

o Tried to fix an elusive Enforcer hit on reading location 0, but I’m not
sure I really got it, since I had trouble reproducing the problem.

XPRZModem 18 / 22

2.50, 15 Nov 91 - Fixed bugs and added the following features:

o Added code to support 32 bit CRC (Circular Redundancy Check).
CRC-32 adds a little more protection to the data being sent
and received than does CRC-16. Source for the CRC-32 additions
came from the Unix version of RZ/SZ by Chuck Forsberg.

o Added code to update_rate() function in utils.c to avoid the
Guru # 80000005 if you decide to adjust the system clock during an
upload or download from Daylight Saving Time to Standard Time. :-)

o Proto additions using libinit.o and libent.o, and eliminating all
of the assembler code was supplied by Jim Cooper of SAS. Jim
also supplied the mysprintf() code to replace sprintf(). This
version of XprZmodem can be compiled with the SAS version 5.10 C Compiler.
I do not know how well it might compile with the Aztec compiler.

2.51, 29 Jan 92 - Rxtimeout changed from 600 to 300 for upload timeout
problem by John Tillema.

2.52, 06 Mar 92 - Recompile code for 68020 library code. Non-68020 code worked
fine but John Tillema was not able to test the 2.51 68020
version.

2.53, ?? ??? ?? - Special Version by Olaf ’Olsen’ Barthel Author from "Term"
(Don’t know what he changed)

2.60, ?? ??? ?? - Don’t know who made this version

2.60a,?? ??? ?? - Don’t know who made this version

2.61, 3 July 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o mysprintf() in Utils.c - returned int changed to unsigned int.
SAS/C gave a Warning about this.

o In function XProtocolHostMon() (module Utils.c) declared
static UBYTE startrcv[] = { ZPAD, ZDLE, ZHEX, "00" };
SAS/C 6.x gave an error about this.
Declared to:
static UBYTE *startrcv[] = { ZPAD, ZDLE, ZHEX, ’0’,~’0’ };

2.62, 27 Jul 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Now Blocksize avaiable

2.63, 30 Jul 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Now support locale.library to use different languages with
Workbench 2.1, 3.x. On this time will be only the default
english-language and a german catalog-file. Please send me

XPRZModem 19 / 22

the filled up xprzmodem_catalog.ct for your language.

2.64, 3 Aug 93 - Rainer Hess made the following changes:

o NOT RELEASED! ONLY FOR BETATESTER.

o Blocksize was global declared, it’s now in struct Vars.

o Bug-Fix in function update_rate(), machine crashes on little files
e.g. 2 Bytes - old problem from 2.52 and before!

3.0, 13 Aug 93 - Rainer Hess made the following changes:

o It’s time to make a full release...

3.1, 01 Oct 93 - Documentation update by Geoffrey Faivre-Malloy

o Conversion of documentation to Amigaguide format.

03 Oct 93 - Changes by Rainer Hess:

o ZModem runs always with the sender blocksize or uses standard-mode
(M1024) if there is on one system a older zmodem.

3.2 - Code-Changes by Robert Williamson, in consultation with Yves
Konigshofer.

o oversights in the credits rectified

o Added support for FTN operations and FTN Zmodem-derivative protocols

o A number of strings were not localized, corrected.

o Only wb2+ versions supported
o Removed all makefiles except 68000, 68030 and 68040 WB2 versions.

o Added callbacks.a - Protection of ALL registers used for callback
functions is restored.

o XPR 3 xpr_updstatus function is enabled, permitting notification
of transfer status for EACH file sent or received.

o Changed most references to KSIZE as a defined constant to use local
variable v-Ksize instead.

o Compiler DEFINE ZEDZAP causes certain code sections to be replaced with
xpr-friendly versions from xprzedzap source or new code inserted.
These changes should be compatible with usage of the library in pure
Zmodem mode.

o Defined default setups for both xprzmodem and xprzedzap optomized for
each..

o partial XPR 2.001 support for dual-status windows added.

o Protocol name displayed will be one of:
Zmodem, 1K blocks standard, up to 8K, non-ftn mode

XPRZModem 20 / 22

ZedZap, up to 8K Blocks based upon bps rate, ftn mode
ZedZip, 1k blocks , ftn mode
DirectZap, up to 8k blocks, minimum escaping, ftn mode

o Added localization for new options. These are NOT translated for
german catalog, so that catalog has been removed from distribution.

o During batch transfers, Error message field is set to "None" when
starting to send or receive next file.

3.3 - internal

3.4 - Some Protocol names were incorrect on receive, fixed.

1.32 todo

Here are some features that would be nice for XPRZModem to have sometime
in the future. If there are any capable hackers out there that would like
to improve upon what has already been written, feel free to do so.

o Preserve date of file being transferred.

o Investigate possibility of saving file protection bits.

o Work out ways to increase the transfer speed.

o Additional changes as time and others may suggest.

o Add TrapZap (TZA) support

o Work out ways to respond to receiver’s interrupts faster.

1.33 credits

Special thanks (in alphabetical order) go to:

Olaf ’Olsen’ Barthel

Jim Cooper

Geoffrey Faivre-Malloy

Rainer Hess

Rick A. Huebner

Yves Konigshofer

Willy Langeveld

Russell McOrmond

XPRZModem 21 / 22

Marco Papa

William M. Perkins

John Tillema

Robert Williamson

1.34 Olaf ’Olsen’ Barthel

Who knows what he changed!

1.35 Jim Cooper

Supplied the mysprintf code.

1.36 Geoffrey Faivre-Malloy

Converted XPRZModem documentation to amigaguide format.

1.37 Rainer Hess

Responsible for version 2.61 to 3.1.
Many features he claimed he added first appeared in Yves’s sources.
EMail: rhess@a3tnt.adsp.sub.org

1.38 Rick A. Huebner

Wrote XPRZModem.library! Without him we wouldn’t have this wonderful source
code to base this on :) Rick also developed zmodem for Opus BBS on the IBM.
He was also the original author of the Proteus BBS Arexx Engine for the Amiga.

1.39 Yves Konigshofer

The author of xprzedzap.library (released versions: 0.55, 0.85, 1.00, 1.5)
It seems that Yves Koingshofer was not given credit for such features as
dos.library usage, variable block-size, 8 K blocks etc. Perhaps these
changes were done independantly to Yves’s xprzedzap.library derviative or
perhaps credit for his work was inadvertandly left out. Since
xprzedzap.library received wide release via AmiNet, and has been in use with
numerous BBS’s and Term programs as well as with mailers such as JAZ, POP,

XPRZModem 22 / 22

RAP, GAZEBO, PORTICUS, UMBRELLA and JAMMAIL for a number of years, I found it
strange no credit was given to Yves who put so much effort into this work.
Yves is also the author of Contact! BBS.

1.40 Willy Langeveld

Invented the XPR version 1.0 and had help from
Marco Papa
updating it to

version 2.0. Willy is the author of the popular telecomm program VLT.

1.41 Russell McOrmond

One of the prime movers on the XPR 3 mailing list, developed callback
protection, format.a from which xprsprintf.a was copied, and the
xpr_updstatus function. He is the author of the mailer development language
WPL and of xprclock.library and xprfts.library. @endnode

1.42 Marco Papa

Collaborated with
Willy Langeveld
in updating the XPR specs from 1.0 to 2.0.

1.43 William M. Perkins

Spent many selfless hours of his life updating XPRZModem (2.50 & 2.52)

1.44 John Tillema

John fixed a bug in 2.51 of the library.

1.45 Robert Williamson

Developer of ver 3.2 of both xprzmodem.library and xprzedzap.library.
Keeper/Author of xprfts.library v1.1, xprslk.library v0.40.
Author of the Xpack utilities and the Shelter Mailers: Roof,Porticus,Gazebo
and Umbrella and the Melody point mailers: Jaz and Rap. Keeper of the
sources of ConfMail and xferq.library v1.9
email: robert@ecs.mtlnet.org

	XPRZModem
	XPRZModem.guide
	introduction
	installation
	interface
	options
	Text Translation Mode
	Overwrite Mode
	Buffer Size
	Frame Size
	Error Count
	Block Size
	Auto Activate
	Delete After Sending
	Keep Partial Files
	Send Full Directory Path
	Receive Full Directory Path
	Default Path
	Maximun Block size for file transfer
	Set Link rate
	No files mode
	DirectZap mode
	FTN mode
	XPR2001 Mode
	XPRzedzap Defaults
	XPRzmodem Defaults
	Serial Port Settings
	Receiving Files
	sending
	technical
	future
	history
	todo
	credits
	Olaf 'Olsen' Barthel
	Jim Cooper
	Geoffrey Faivre-Malloy
	Rainer Hess
	Rick A. Huebner
	Yves Konigshofer
	Willy Langeveld
	Russell McOrmond
	Marco Papa
	William M. Perkins
	John Tillema
	Robert Williamson

